SOLVING EQUATIONS

Pearson Edexcel - Tuesday 21 May 2019 - Paper 1 (Non-Calculator) Foundation Tier

10					
10) (a)	4	B1	cao	
	(b)	8	B1	cao	
	(c) 3 M1			for a correct first step eg subtracting 2 from both sides or dividing all terms by 6 cao	Division by 6 must be ALL terms

Pearson Edexcel - Monday 12 November 2018 - Paper 3 (Calculator) Foundation Tier

2.					
	17 (a)	Full working seen	M1	for an initial step with the expressions eg doubling $2x + 1$ or $x + 2$ or halving $4x$ or for identifying <i>CD</i> as $x + 2$ or for identifying <i>DE</i> as $2x + 1$	May be seen in working or on diagram
			M1	for an expression for the total perimeter, eg $4x + 2 \times (2x + 1) + 2 \times (x + 2)$	
			C1	for full simplification and equating to 18	
	(b)	1.2	M1	for isolating terms in <i>x</i> can ft an equation stated in (a) provided in form $ax + b = c$	10x = 18 - 6
			A1	for 1.2 oe	Accept $\frac{12}{10}$ or $\frac{6}{5}$

Pearson Edexcel - Thursday 7 June 2018 - Paper 2 (Calculator) Foundation Tier

3.

11	(a)	17	B1	cao	
	(b)	12	B1	cao	
	(c)	5.5	B1	Accept $\frac{11}{2}$, $5\frac{1}{2}$ oe	

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Foundation Tier

				-
25	3.8	M1	for a correct first step,	Method must show LHS ×2 and both terms on
			eg 5 - x = 2(2x - 7) or 5 - x = 4x - 14 or $\frac{5}{2} - \frac{x}{2} = 2x - 7$	RHS $\times 2$ or 5 – x and both terms on RHS $\times 2$
		M1	(dep) for isolating terms in x	eg $-4x$ both sides with -5 both sides
			eg 4x + x = 14 + 5 or $-\frac{x}{2} - 2x = -7 - \frac{5}{2}$	or $+x$ both sides with $+14$ both sides
		A1	oe	Accept $\frac{19}{5}$, $3\frac{4}{5}$ oe but not $\frac{-19}{-5}$ oe

Pearson Edexcel - Monday 6 November 2017 - Paper 2 (Calculator) Foundation Tier

5.				
	16	$1\frac{1}{2}$	M1 M1 A1	for correct expansion of the bracket or dividing all terms by 3 as a first step eg $3x - 3$ or $(5x - 6)/3 = 3(x - 1)/3$ for isolating terms in x on one side of an equation eg $5x - 6 - 3x = -3$ or both constants on one side of an equation, eg $5x = 3x - 3 + 6$, ft $5x - 6 = 3x - 1$ for $1\frac{1}{2}$ oe

Pearson Edexcel – Specimen 2 - Paper 1 (Non-Calculator) Foundation Tier

6.

10 a	 -2	M1 A1	For subtraction of 7 from both sides or division of all terms by 3 as first step of solution cao
b	8	M1 A1	For substitution $3 \times 6 - 2 \times 5$ cao

Pearson Edexcel – Specimen 2 - Paper 2 (Calculator) Foundation Tier

7.

17 (a)	4x + 6y	M1 A1	for 4x or 6y for $4x + 6y$ or $2(2x + 3y)$
(b)	5(2x-3)	B1	cao
(c)	4	M1 A1	for method to isolate terms in p on one side and constants on the other side cao

Pearson Edexcel – Specimen 1 - Paper 2 (Calculator) Foundation Tier

16 (a)	1.5	M1 A1	for rearranging, eg $11 - 5 = 4c$ 1.5 oe
(b)	-3	M1 A1	for a first step of either dividing both sides by 5, eg $\frac{5(e+7)}{5} = \frac{20}{5}$ or for expanding the bracket, eg $5 \times e + 5 \times 7 = 20$ cao
(c)	m^6	B1	cao

Pearson Edexcel – Specimen 1 - Paper 3 (Calculator) Foundation Tier

9.

10		38 15	B1 cao P1 (47 - 2) ÷ 3 A1 cao
----	--	----------	-------------------------------------

OCR – Tuesday 03 November 2020- Morning - Paper 1 (Calculator) Foundation Tier

10.

15	(a)	20	2	M1 for $\frac{x}{2} = 15 - 5$ or better or $x + 10 = 30$	For M1 must be an equation in <i>x</i>
	(b)	5a(a – 2) final answer	2	M1 for 5(<i>a</i> ² – 2 <i>a</i>) or <i>a</i> (5 <i>a</i> – 10) as answer	Condone missing final bracket
	(c)	(x + 7)(x + 8)	M2	M1 for $(x + a)$ and $(x + b)$ where $ab = 56$ or $a + b = 15$	
		-7 and -8 final answer	B1FT	for correct solutions from <i>their</i> quadratic factors	

OCR Thursday 05 November 2020- Morning (Non-Calculator) Foundation Tier

11.

21	$\begin{bmatrix} x = \end{bmatrix} -1 \\ \begin{bmatrix} y = \end{bmatrix} 4$	4		ISW correct answers seen in working then reversed
			M1 for attempt to equate coefficients M1 for correct method to eliminate 1 variable	Condone 1 arithmetic error – a sign error is not an arithmetic error Condone 1 further arithmetic error Alt method M1 for rearrangement of one equation to make either x or y the subject M1 for correct substitution of <i>their</i> rearrangement into the other equation
			A1 for 1 correct solution If A0, SC1 for a pair of values that satisfy one of the original equations	

OCR November 09 November 2020- Morning (Calculator) Foundation Tier

11	c = 2 final answer d = -3 final answer	5	B3 for <i>c</i> = 2 and	Must not come from wrong working
			B2 for $d = -3$ OR M4 for $5 + 2d = -1$ oe or M3 for $10 + c = 12$ or $5 + cd = -1$ or $10x + cx = 12x$ or M2 for $10x + 5 + cx + cd$ [= $12x - 1$] oe or M1 for $10x + 5$ or $cx + cd$	Accept e.g. $d2$ or $2 \times d$ etc for $2d$ e.g. $10x + cx + cd = 12x - 6$

OCR Tuesday 6 November 2018 – Morning (Calculator) Foundation Tier

13.

13		31.4[2] or 31.41	2	M1 for π × 10 oe	Method can be spoiled
	 			1	· · · · · ·

14.

14	(a)	(i)	7 cao	1		Do not allow a7 or a ⁷
		(ii)	12 cao	1		Do not allow b12 or b12
	(b)		9x(2x + 1) final answer	2	B1 for 9(2x ² + x) or x(18x +9) or 3x(6x+3) or 3(6x ² +3x)	condone final bracket missing

OCR Monday 12 November 2018 – Morning (Calculator) Foundation Tier

15.

7	(a)	Hollow circle at 3 only	1		No other blobs
		Line/arrow "pointing" right from 3	1	Marks independent	Open line or arrow only and condone mark/blob over 8 or x If line, must reach approx. 8 Condone line/arrow starting closer to 3 than 4
	(b)	11a – 2c final answer	2	B1 for 11a or - 2c seen	Accept in any order 11a + - 2c scores 1 mark
	(c)	6	2	M1 for $2x = 12$ or $\frac{x}{3} = 2$ or $\frac{x}{1.5} = 4$	If T&I only correct answer scores Must be algebraic method for M1 Do not accept embedded answers

16.

1	11	(a)	6	1	
		(b)	1.5 or $1\frac{1}{2}$ or $\frac{3}{2}$ oe	2	May be (eg) $\frac{18}{6} = 2g$ or $\frac{18}{2 \times 6}$ etc.

OCR Monday 24 May 2018 – Morning (Calculator) Foundation Tier

ſ	6		11	2	M1 for 3 + 2 × 4	
L						

Pearson Edexcel – Sample Papers - Paper 1 (Non-Calculator) Foundation Tier

18.

19	7	M1 Correct method to isolate terms in x
		A1
		AI

OCR Sample Question Paper 1 – Morning/Afternoon (Calculator) Foundation Tier

19.

17	(a)	E	1		
			1 AO1.3a		
	(b)	C and D	2	B1 for each	
			2 AO1.3a		

OCR Sample Question Paper 2 – Morning/Afternoon (Non - Calculator) Foundation Tier

20.

12	(a)	6	2	M1 for 3x = 18
			2 AO1.3a	
	(b)	-3	3	M2 for $(x + 3)(x + 5)$ seen or implied in
		-5	3 AO1.3a	table
		•		Or
				M1 for $(x \pm 3)(x \pm 5)$ seen
				or pair of factors giving two correct
				terms seen or implied in table
				And
				B1 for correct solutions FT <i>their</i> quadratic factors

OCR Sample Question Paper 2 – Morning/Afternoon (Non - Calculator) Foundation Tier

18	(a)	The first error is in step 2 -3x - 2x = -5x, not $-x$ as given	2 2 AO2.5a	B1 for identifying step 2 B1 for explaining the error	
	(b)	$[x^{2} + 4x + x + 4 = x^{2} - 3x - 2x + 6]$ $x^{2} + 5x + 4 = x^{2} - 5x + 6$ 5x + 4 = -5x + 6 10x + 4 = 6 10x = 2 $x = \frac{1}{5}$	2 2 AO1.3a	M1 for an attempt to correct the solution in line with their answer to (a)	

OCR Sample Question Paper 3 – Morning/Afternoon (Calculator) Foundation Tier

22.

1	(a)	(i)	9	1		
				1 AO1.3a		
		(ii)	3	1		
				1 AO1.3a		
		(iii)	45	1		
				1 AO1.3a		
	(b)	(i)	13	2	M1 for $12 \times 4 - 5 \times 7$ or better	
				2 AO1.3a		
		(ii)	$r = \frac{p+q}{r}$	2	M1 for $4r = p + q$	Allow correct equivalents of
			$r = \frac{1}{4}$	2 AO1.3a		$\underline{p+q}$
						4

AQA Tuesday 19 May 2020 – Morning (Non-Calculator) Foundation Tier

Q	Answer	Mark	Comments		
	6x = 13 + 11 or $6x = 24or \frac{24}{6}$	M1	oe eg $-6x = -13 - 11$ or $-6x = -13 - 11$ or $-6x = -13 - 11$ or $-13 - 11$ or $-13 - 13$ or -13 or $-13 - 13$ or -13 or	6 <i>x</i> = -24	
	4	A1			
14(a)	Ad				
	Embedded answer, eg $6 \times 4 - 11 = 1$	M1A0			
	24 with no other working	M0A0			
	Flow chart method, if 4 not given as t				
	$x \rightarrow \times 6 \rightarrow -11 \rightarrow 13$ and $13 \rightarrow +11 \rightarrow \div 6 \rightarrow x$				

Q	Answer	Mark	Comments		
	(2 × 4 <i>a</i> =) 8 <i>a</i>	B1			
	$\left(\frac{15a}{3}\right) = 5a$	B1			
	13 <i>a</i> + 2		ft B1B0 or B0B1 for		
	their $8a + \text{their } 5a + 9 - 7$				
		B1ft	is in the form pa + q		
			do not award with further inc	orrect work	
		eg $13a + 2 = 15a$			
	Ade	Guidance			
	13a + c could come from incorrect working				
	eg $8a + 4 + 9 + 5a - 7 = 13a + 16$ (their $8a$ is $8a + 4$)				
14(b)	eg $8a + 4 + 9 + 5a - 7 = 13a + 6$ (their $8a$ is $8a + 4$)				
	eg 8 a + 9 + 5 a - 7 = 13 a + 16				
	eg $13a + 16$ (no other working)				
	6a + 9 + 5a - 7 = 11a + 2			B0B1B1ft	
	8a + 9 + 12a - 7 = 20a + 2			B1B0B1ft	
	8 <i>a</i> + 9 + 5 - 7 = 8 <i>a</i> + 7			B1B0B1ft	
	$8a + \frac{15a}{3} + 7$			B1B0B0ft	
	6a + 9 + 12a - 7 = 18a + 2				
	6a + 5a + 16 = 11a + 16			B0B1B0ft	

AQA Thursday 4 June 2020 – Morning (Calculator) Foundation Tier

Q	Answer	Mark	Comment	S
	8	B1		
	Additional Guidance			
	56 ÷ 7 = 8			B1
5(a)	Answer of ×8 (unless recovered)			B0
	Answer of 8x (unless recovered)			B0
	Award the mark for an embedded and	if the answer is selected		
	eg1 7 × 8 = 56 with no answer or with incorrect answer eg2 7 × $8 = 56$ with no contradictory answer			

Q	Answer	Mark	Comments	
	7	B1		
	luidance			
	25 - 18 = 7			B1
	18 – 25 = 7 (allow recovery)	B1		
5(b)	Answer of -7 (unless recovered)	B0		
	Answer of 7y (unless recovered)	B0		
	Award the mark for an embedded and			
	eg1 $25 - 7 = 18$ with no answer or with incorrect answer			B0
	eg2 $25 - (7) = 18$ with no contradictory answer			

AQA Tuesday 21 May 2019 – Morning (Non-Calculator) Foundation Tier

25.

24(a)	- <i>a</i>	B1	
24(b)	$\frac{1}{c}$	B1	

AQA Thursday 8 November 2018 – Morning (Calculator) Foundation Tier

	Alternative method 1					
	35x + 6x = ax or $35 + 6 = aor 41x = ax$	M1				
	<i>a</i> = 41	A1				
	40 + 3 <i>b</i> = 13	M1	oe			
	<i>b</i> = -9	A1	SC3 a = 41, b = -27 o	or $a = 41, b = \frac{5}{3}$		
	Alternative method 2	- 1 - 1				
	35x + 40 + 6x + 3b or $41x + 40 + 3b$	M1				
	35x + 6x = ax or $35 + 6 = aand40 + 3b = 13$	M1dep	oe eg $41x = ax$ and $3b =$	= -27		
	<i>a</i> = 41	A1	implies first M1 only	nplies first M1 only		
20	<i>b</i> = -9	A1	SC3 a = 41, b = -27 o	or $a = 41, b = \frac{5}{3}$		
	8	Additional G	uidance	27		
	a = 41 and $b = -9$	M1A1M1A1				
	a = 41 or $b = -9$			M1A1		
	35x, 40, 6x and 3b seen without a	MO				
	35x + 40 + 6x + b leading to an a	SC3				
	35x + 8 + 6x + 3b leading to an a	SC3				
	35x + 8 + 6x + b leading to an answer of $a = 41$ and $b = 5$			M1A1		
	a = 41x			MO		
	For $\frac{5}{3}$ accept 1.66 or 1.67					
	Condone multiplication signs eg $35 \times x$ for $35x$			0		

AQA Monday 6 November 2017 – Morning (Calculator) Foundation Tier

27.

	Alternative method 1			
	12 <i>x</i> – 8	M1	May be seen in a grid	
	their $12x - 2x = -5$ + their 8 or $10x = 3$ or their $-8 + 5 = 2x$ - their $12x$ or $-3 = -10x$	M1	Collecting two terms in x and two constant terms correctly oe eg $10x - 3 = 0$	
	0.3 or $\frac{3}{10}$	A1ft	ft M1M0 or M0M1 with exactly one error	
	Alternative method 2			
27	$\frac{x}{2} - \frac{5}{4}$	M1		
	$3x - \text{their } \frac{x}{2} = \text{their} -\frac{5}{4} + 2$		Collecting two terms in x and two constant terms correctly	
	or $\frac{5}{2}x = \frac{3}{4}$	M1	oe eg $\frac{5}{2}x - \frac{3}{4} = 0$	
	or -2 + their $\frac{5}{4}$ = their $\frac{x}{2} - 3x$			
	or $-\frac{3}{4} = -\frac{5}{2}x$			
	0.3 or $\frac{3}{10}$	A1ft	ft M1M0 or M0M1 with exactly one error	

Additional guidance continues on the next page

	Additional Guidance	
	12x - 2 = 2x - 5	MO
	10 <i>x</i> = -3	M1
	x = -0.3	A1ft
	12x - 8 = 2x - 5	M1
	10x = -5	MO
	$x = \frac{-5}{10}$	A1ft
	12x - 8 = 2x - 5	M1
	14 <i>x</i> = 3	MO
27 cont	$x = \frac{3}{14}$	A1ft
	12x - 8 = 2x - 5	M1
	14x = -13	мо
	$x = -\frac{13}{14}$ (two errors)	A0ft
	12x - 8 = 8x - 20	M1M0A0
	Any ft answer must be exact or rounded or truncated to at least 2 dp	
	The last two marks can be implied without the collection of terms seen	
	eg $12x - 6 = 2x - 5$ and answer 0.1	M0M1A1ft
	Collecting terms before the bracket has been expanded	Zero

AQA Sample Paper 2– Morning (Calculator) Foundation Tier

29	(x-4)(x+8)=0	B1	
----	--------------	----	--